Review of Segments

Draw a diagram to represent the following. \overline{AB} intersects \overline{CD} at its midpoint E. A

Question 1: You must justify any equations you write. If CE = 3x+1 and DE = 5x-7, find the value of x and CD.

$$CE = DE [Def. Alm:dpt]$$

$$CE = DE [Ocf. of \cong seg.]$$

$$3x+1 = 5x-7 \quad [a] \quad (E+DE=CD) [Seg. Add. Post.]$$

$$2x=8 \quad 3x+1+5x-7=CD$$

$$(D=8x-6)$$

$$CD=32-6$$

$$(D=36units)$$

Draw a diagram to represent the following.

 $\overline{\it AB}$ intersects $\overline{\it CD}$ at its midpoint E.

Question 2: You must justify any equations you write.

If AE = 2y + 8, AB = 6y + 16, and $EB = y^2 + 4$,

find the value of y and determine if E is the midpoint of \overline{AB} .

If B is the midpoint of \overline{AC} , \nearrow Things we already know:

what do you think is true?

These are statements we will have to prove. It will be our first Theorem.

Building Blocks of Logical Reasoning (Proof)

Definitions: These are given. Don't make things up. Know the exact wording. (notecards)

Postulates (Axioms): These are statements we accept without proof. (no proof needed)

Properties: These are observable and are also accepted without proof. (no proof needed)

Theorems: These are statements that require proof. (A proof is a logical argument.)

The Midpoint Theorem If B is the midpoint of \overline{AC} then

			$AB = \frac{1}{2}AC$,	$BC = \frac{1}{AC}$, and	$AB = BC_{-n}$
A-	ß	C	3	2	•	

Given: B is the midpoint of \overline{AC} Prove: $AB = \frac{1}{2}AC$, $BC = \frac{1}{2}AC$, AB = BC

	Statements	Reasons
1.	Bistlemidot of AC	Given
2.	ABEBC	Def. of midpt.
3.	AB = BC	Def. of \cong seg.
4.	AB+BC=AC	Seg. All. Post.
5.	AB+AB=AC	Substitution Prop. of = (3>4)
6.	DAB=AC	Ditributive Pap.
7,	AB= =AC	Division Prop. of =
8.	BC= JAC	Subst. of = (3 > 7)

Naming Angles:	1 point
A /	2B [vertex]
	3 points [ABC [middle] is the] ventex
B	2CBA 21 #
4	LBX (annot use)
A B D	LABC, 21 LCBD, 22
•	7 c BD) 7 c

Angle Addition Postulate

(1) If P is in the interior of $\angle RST$,

then $m\angle RSP + m\angle PST = m\angle RST$

(2) If $\angle AOC$ is a straight angle and B is any point not on \overline{AC} ,

then $m\angle AOB + m\angle BOC = 180^{\circ}$.

This part of the Angle Addition Postulate is sometimes expressed as the Linear Pair Postulate.

If two angles form a linear pair, the angles are supplementary.

Assignment #9

Read and Take Notes on p. 17-19 and 23.

Complete p. 21-22 WE #1-18, 29-33 odd

Make the Chapter 1 Note cards (16)